Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review
نویسندگان
چکیده
Deactivation of commercially relevant cobalt catalysts for Low Temperature Fischer-Tropsch (LTFT) synthesis is discussed with a focus on the two main long-term deactivation mechanisms proposed: Carbon deposits covering the catalytic surface and re-oxidation of the cobalt metal. There is a great variety in commercial, demonstration or pilot LTFT operations in terms of reactor systems employed, catalyst formulations and process conditions. Lack of sufficient data makes it difficult to correlate the deactivation mechanism with the actual process and catalyst design. It is well known that long term catalyst deactivation is sensitive to the conditions the actual catalyst experiences in the reactor. Therefore, great care should be taken during start-up, shutdown and upsets to monitor and control process variables such as reactant concentrations, pressure and temperature which greatly affect deactivation mechanism and rate. Nevertheless, evidence so far shows that carbon deposition is the main long-term deactivation mechanism for most LTFT operations. It is intriguing that some reports indicate a low deactivation rate for multi-channel micro-reactors. In situ rejuvenation and regeneration of Co catalysts are economically necessary for extending their life to several years. The review covers information from open sources, but with a particular focus on patent literature.
منابع مشابه
A review of Fischer-Tropsch synthesis on the cobalt based catalysts
Fischer-Tropsch synthesis is a promising route for production of light olefins via CO hydrogenation over transition metals. Co is one of the most active metals for Fischer-Tropsch synthesis. Some different variables such as preparation parameters and operational factors can strongly affect the selectivity of Fischer-Tropsch synthesis toward the special products. In the case of preparat...
متن کاملDeactivation Behavior of Carbon Nanotubes Supported Cobalt Catalysts in Fischer-Tropsch Synthesis
The effects of electronic properties of inner and outer surfaces of Carbon Nano Tubes (CNTs) on the deactivation of cobalt Fischer-Tropsch (FT) catalysts were studied. The comparative characterization of the fresh and used catalysts by TEM, XRD, TPR, BET and H2 chemisorption showed that cobalt re-oxidation, cobalt-support interactions and sintering are the main sources o...
متن کاملAccelerated Deactivation and Activity Recovery Studies of Ruthenium and Rhenium Promoted Cobalt Catalysts in Fischer-Tropsch Synthesis
Accelerated deactivation of Co/Al2O3 catalysts in Fischer-Tropsch synthesis and the effect of Re and Ru as the catalytic promoters are reported. 15wt% Co/Al2O3 catalyst and 1wt% Ru and 1.4wt% Re promoted cobalt catalysts have been formulated and extensively characterized. The deactivation of the unpromoted cobalt catalyst and those promoted with ...
متن کاملHeterogeneous Catalyst Deactivation and Regeneration: A Review
Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical) and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing). The key...
متن کاملRaising Distillate Selectivity and Catalyst Life Time in Fischer-Tropsch Synthesis by Using a Novel Dual-Bed Reactor
In a novel dual bed reactor Fischer-Tropsch synthesis was studied by using two diffrent cobalt catalysts. An alkali-promoted cobalt catalyst was used in the first bed of a fixed-bed reactor followed by a Rutenuim promoted cobalt catalyst in the second bed. The activity, product selectivity and accelerated deactivation of the system were assessed and compared with a conventional single bed r...
متن کامل